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Abstract. We review the evidence for saturation seen at HERA, and we discuss a few theoretical aspects
of saturation in deep inelastic electron proton scattering.

PACS. 12.38.Bx,12.38.-t,12.38.Cy

1 Introduction

Measurements of deep inelastic structure functions at
small x at HERA have stimulated novel ideas on parton
dynamics in QCD, in particular the possible existence of
states with high gluon density in electron–proton scatter-
ing (“saturation”) [1]. More recently, these ideas have been
extended to heavy ion collisions [2], and arguments have
been given that high gluon densities of the incoming heavy
ions may initiate the formation of the searched-for quark
gluon plasma. This talk summarizes the present evidence
for saturation collected in deep inelastic electron–proton
scattering (DIS) at HERA; I also address a few theoretical
aspects of saturation in DIS.

In a reference frame where the proton has a large lon-
gitudinal momentum and the photon carries only a trans-
verse momentum, the leading twist DGLAP description
of deep inelastic scattering can be visualized in a cascade
picture: the interaction of the virtual photon with the fast
proton is through a single parton cascade which has its
beginning long before the interaction with the photon. At
small x, according to the linear DGLAP evolution equa-
tions, the cascade is mainly gluonic, and the cross sec-
tion for this process becomes large, i.e. the probability
for the photon of “finding a small-x” gluon grows. Conse-
quently, for sufficiently small values of x, also the probabil-
ity of seeing a second, third, ... cascade (Fig. 1) starts to
become non-negligible. The density of participating glu-
ons grows, and interactions among these gluons come into
play. The net result of these interactions is a weakening
of the growth of the gluon density at small x. Once the
density of gluons is high, the concept of “partons” is no
longer appropriate, and the language of “strong classical
fields” becomes more suitable.

This picture of the photon as “seeing” a field of high
gluon density of the proton has also been named “color
glass condensate” [2]. Here the term “condensate” hints at
the high density, whereas “glass” refers to the life-time of
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Fig. 1. Multi-cascade configurations at small x

the gluonic field which is much longer than the interaction
time of the photon: the gluon field appears as a viscid
medium.

An important feature of this saturation phenomenon is
the appearance of a x-dependent momentum scale, Q2

s (x).
The onset of saturation, as we have described, depends on
the momentum scale Q2: the multi-cascade interactions
start to become important at a certain x value which de-
creases with increasing Q2. This dependence can be in-
verted to define the saturation momentum scale Q2

s (x);
calculations based upon the BFKL pomeron [3,4] lead to
the functional form

Q2
s (x) = c

(
1
x

)λ

, (1)

where, typically, λ ≈ 0.3. The constant scale parameter
c, so far, cannot be calculated, but has to be determined
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from a (model-dependent) comparison with data. For Q2

values larger than the saturation scale (1) the QCD parton
model with the linear DGLAP evolution equations holds,
whereas for smaller Q2 values the saturation effects be-
come visible. More elaborate calculations show that (1) is
a too crude approximation: there are logarithmic correc-
tions in front of the exponential, and also the exponent is
a slightly more complicated function [5].

The experimental verification of saturation in DIS is
an important task. If true, it means that partons with
very small x originate from regions of high density and
are probing subtle QCD dynamics. This would represent
a step beyond the QCD-based parton picture, which deals
with dilute partons only. As to practical applications, sat-
uration has implications both for the analysis of heavy ion
collisions at RHIC and of proton–proton scattering at the
LHC. For the latter, saturation in DIS is expected to be-
gin with the presence of multiple parton cascades; their
measurement could be used to estimate, in proton–proton
collisions, the effect of multiple partonic interactions and
to understand the general structure of events. This clearly
will help to control the background of new physics.

The HERA kinematic domain is not large enough, and
the determination of the gluon density not precise enough
to observe, as a signal of saturation, a flattening of the
gluon density at fixed Q2 and small x. So we have to look
for other signals of saturation. The x-dependence of the
saturation scale Q2

s (x) allows one to trace saturation not
only at fixed Q2 as a function of x, but also at fixed x as a
function of Q2: this suggests to look, in DIS, for saturation
effects also in the region of smaller Q2 values where we
expect to see the transition from the QCD parton picture
to non-perturbative strong interactions. Clearly, in this
region the use of perturbative arguments is less reliable.
Nevertheless, this is the region where at HERA, so far,
the strongest evidence for saturation comes from.

2 Evidence for saturation at HERA

In the following I review three different observations
which, in my opinion, are indicative of saturation being
present in the small-x and low-Q2 region:
(i) models based upon saturation ideas are successful in
describing the deep inelastic proton structure function F2
in the small-x region at low and at moderate Q2;
(ii) the observed geometric scaling of F2 is a fundamental
feature of saturation;
(iii) the observed constant (with energy) ratio of DIS
diffractive and DIS total cross sections has a natural ex-
planation in saturation models.
Let me briefly comment on these observations.

The classical simple dipole saturation model (GBW) is
due to Golec-Biernat and Wüsthoff [6]: with three param-
eters it successfully describes HERA data of F2 in the low
and intermediate Q2 region; with a fourth parameter the
description extends down to Q2 = 0. Because of its simple
analytic form it is straightforward to determine a satura-
tion scale: the dipole cross section depends upon r/Rs(x),

Fig. 2. Estimates of the saturation scales in two different mod-
els

where R2
s (x) = 1

Q2
0

(
x
x0

)λ

. Inserting this into the dipole
formula one arrives at the structure function F2 which
depends on the ratio Q2/Q2

s (x) where Q2
s = 1

Rs(x) , and,
hence, predicts the observed property of geometric scaling
[7]. In the x–Q2-plane (Fig. 2), the lower line is defined by
Q2 = Q2

s , and it marks the transition region from pQCD
to non-perturbative physics. Above this line the QCD par-
ton model holds, and F2 can be expanded in inverse powers
of Q2 (twist expansion [8]). Below, in the small-Q2 region,
a power series expansion in Q2 applies. The transition be-
tween the two regions is not sharp, and it is not clear how
far above the line corrections to DGLAP (higher twist cor-
rections) could be significant. An improved version [9] of
the GBW saturation model includes logarithmic scaling
violations: this not only improves the quality of the fit to
HERA data, but also extends the validity towards larger
Q2 values. An alternative saturation model [10], based
upon an approximate solution of the non-linear Balitsky–
Kovchegov equation, also describes the HERA data. As
to the transition from pQCD to non-perturbative strong
interactions, it leads to a somewhat different conclusion.
The the upper two lines in Fig. 21 present, in the model of
[10], two different definitions of the transition line, and the
region between these lines can be interpreted as a “tran-
sition strip”. Compared with the GBW model, the limit
of the linear evolution equations lies considerably higher,
i.e. it is shifted towards larger Q2 values. The discrepancy
between the two models helps to illustrate the present un-
certainty of where, in the x–Q2-plane, the applicability of
the linear DGLAP evolution ends.

1 I wish to thank M. Lublinsky for allowing me to use this
figure.
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It should be stressed that these saturation models have
been constructed to describe the transition region at small
x and moderate/small Q2 where DGLAP is expected to
require larger and larger corrections; their purpose is not
to describe the region of large Q2 and not too small x
where the linear DGLAP evolution equations provide the
adequate description. An important theoretical task, in
particular for HERA physics, is the investigation of the
matching of saturation models with the DGLAP fits. Sat-
uration models in DIS are formulated within the color
dipole picture which has been derived from QCD, so far,
only in the leading-ln s approximation. In order to be
able to compare with NLO DGLAP one needs, at least,
the NLO analysis of the photon impact factor [11] and
of the unintegrated parton distributions functions. Also,
the analysis of low Q2 data in terms of saturation models
needs to be refined to include massive flavors, in particular
charm. A critical discussion of the relation of saturation
models and DGLAP has recently been given in [12].

As it has been said already, saturation leads to scaling
properties of the dipole cross section and of the structure
function F2. In particular,

F2(x, Q2) = F2(Q2/Q2
s (x)). (2)

This feature has clearly been seen in the data. Scaling has
also been derived within the vector dominance model [13];
however, the energy dependence of the scaling momentum
is different from the one of the saturation models.

DIS diffraction, most likely, provides the most sensitive
test of saturation. One of the striking experimental results
[14] is the energy dependence of the diffractive cross sec-
tion, σdiff : the ratio σdiff/σγ∗p

tot (at fixed region of diffrac-
tive masses) is nearly constant with energy. The satura-
tion models, by a subtle interplay of the scales, reproduce
this distinctive feature in a much more convincing man-
ner than other models. It should, however, be noted that
the saturation models for F2, as far as diffraction is con-
cerned, are not completely satisfactory. Neither of them
fully contains the diffractive qq̄ and qq̄g final states (see
below) which at HERA have been shown to contribute
significantly.

The presented features provide evidence that sat-
uration may be present in the small-x region at
low/intermediate Q2 values of F2 and in DIS diffraction.
Clearly, each feature by itself may allow for a different in-
terpretation, and the comparison with saturation models
cannot always claim to reach high precision. On the other
hand, it is remarkable that the simple idea of the high
gluon density allows one to explain different phenomena
which, at first sight, look quite uncorrelated.

To collect further evidence we need to look for other –
if possible: more direct – signals. This will be the task of
the next few years. One direction of future research is the
impact parameter (b) dependence of the dipole cross sec-
tion. So far (i.e. in σγ∗p

tot and in the diffractive cross section
at zero momentum transfer t) we have been dealing with
b-integrated cross sections; but HERA data also include
the dependence on t: studies of b-dependent dipole cross
sections have been started [15] and need further attention.

Another route of looking for signals of saturation is the in-
vestigation of multi-parton chains. As we have mentioned
before, large gluon densities start with the formation and
the interaction of multiple chains of partons. One should
therefore look for signals of these multiple interactions.
Direct evidence for the presence of double chains follows
from the presence of DIS diffraction: the hard part of the
diffractive final states cannot be counted as being part of
the initial conditions to the (leading twist) parton den-
sities. A recent analysis [16] has been based upon this
fact, and it shows that the proper account of this frac-
tion of diffractive data may lead to changes in the global
fit of parton densities in the low Q2 region. The presence
of multichain configurations also affects the cross sections
for multijet final states in DIS. Such jet configurations can
originate from both single chains or from multichain con-
figurations. The conventional hard scattering formalism
takes into account only single chains; a deviation from its
predictions, therefore, might be indicative for the presence
of multichains. Work in this direction is in progress.

3 Remarks on the Balitsky–Kovchegov
equation in DIS

In the second part of this talk I would like to discuss a few
issues of the theoretical background of saturation in deep
inelastic scattering. The models which I have mentioned
are inspired by QCD saturation, but do not yet pretend
to be based upon systematic QCD calculations. Presently
numerous investigations of saturation in QCD are being
discussed, and I want to mention a few topics that are
relevant for saturation in DIS.

An attractive theoretical tool for studying saturation
in QCD is given by the Balitsky–Kovchegov (BK) equa-
tion [17], which represents a non-linear generalization of
the LO BFKL equation and, when written in configura-
tion space variables, has a particularly simple mathemat-
ical form. Since it seems natural to use this equation as a
model in DIS, it is important to understand the content of
this equation and to be able to compute necessary correc-
tions. In the context of using the BK equation also for DIS
diffraction, there is particular interest in the question of
which part of the DIS diffractive cross section is included
in the BK equation.

A good starting point of such an analysis is QCD
reggeon field theory, derived from momentum space Feyn-
man diagrams [18]. This approach allows one to compute
NLO corrections and to keep a connection with hard scat-
tering processes in QCD. Also, momentum space seems
more suited to analyze final states, and analyze s-channel
unitarity cuts of Feynman diagrams. In this field theory
reggeized gluons play the role of the elementary fields,
and the BFKL pomeron represents the bound states of
two gluons. The 2 → 4 gluon vertex [19] describes the
splitting of one pomeron into two pomerons, and invari-
ance under Möbius transformations has been proven for
both the BFKL kernel and for this 2 → 4 vertex. In or-
der to obtain a scattering amplitude, the Green’s function
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Fig. 3. Fan diagram equation in QCD

couple to external impact factors; because of gauge invari-
ance they have special properties which define the space
of functions in which the reggeon field theory operators
are acting.

In this language, a simple non-linear generalization of
the BFKL equation is the fan diagram equation [20] which
sums all fan-like diagrams, with all BFKL pomerons at the
lower end of the fan structure coupling to a single common
dipole (eikonal approximation) (Fig. 3); this equation can
be used as a model for the scattering of a single small
dipole (upper end) on another larger dipole (lower end).

The key element in this equation is the 2 → 4 gluon
vertex [19] which has a rather simple structure:

α2
sV(q1, q2; k1, k2, k3, k4)

=
1

(N2
c − 1)2

( δa1a2δa3a4V (1234) + δa1a3δa2a4V (1324)

+δa1a4δa2a3V (1423) ) , (3)

with the abbreviation V (1234) = V (q1, q2; k1, k2, k3, k4).
This function has good properties: it vanishes as any of
the momenta ki → 0, and it is conformal invariant. Be-
cause of the apparent symmetry of the 2 → 4 vertex under
the exchange of any pair of momenta and color labels, the
AGK cuttung rules are fulfilled. Within the reggeon field
theory this vertex can also be used to compute pomeron
loops (e.g. the self-energy of the pomeron Green’s func-
tion).

Starting from this fan diagram equation in momentum
space one can compute the Fourier transform and compare
with the BK-equation for the dipole scattering amplitude
N , which has the simple form

∂

∂Y
Nx,y = ᾱs

∫
d2z

2π
|x − y|2

|x − z|2 |y − z|2
× (Nx,z + Ny,z − Nx,y − Nx,zNy,z) (4)

(here x, y, ... denote two-dimensional vectors in the trans-
verse coordinate plane, and the subscripts in Nxy are the
coordinates of the color dipole). One finds [21] that the
Fourier transform of the 2 → 4 vertex is quite different
from the kernel of the BK equation. However, making use
of the Möbius properties of the reggeon field theory one
can redefine the reggeon Green’s functions and obtain a
slightly simplified form of the kernel. Taking then also the
limit Nc → ∞, which selects the first term in (3) only,
one finds that the Fourier transform of the 2 → 4 vertex

Fig. 4. Elastic scattering of a quark pair

coincides with the BK kernel [21]. Continuing along these
lines it is also possible to compute corrections in 1/N2

c .
From the point of view of the QCD reggeon field theory,
the sum of fan diagrams represents a handy approxima-
tion. Apart from the coupling to the lower quark pair, the
structure is classical, i.e. there are no real quantum cor-
rections (closed pomeron loops). Eventually, however, one
will have to go beyond this subset of diagrams of reggeized
gluons and treat the interactions as a field theory in 2 + 1
dimensions. In particular, closed pomeron loops [22] will
have to be considered. Also NLO corrections to the 2 → 4
vertex should be computed, and higher interaction ver-
tices (e.g. transitions 2 → 6) will appear. The reggeon
field theory in momentum space provides a starting point
for a systematic investigation, and Fourier transforming
to configuration space allows one to make contact with
the dipole picture.

When using the fan diagram equation or the BK equa-
tion for DIS cross sections, one first looks for saturation
behavior of the dipole scattering amplitude Nxy, i.e for
properties that enter the total DIS cross section. This
has been discussed at many other places and will not be
repeated here. However, the observation of DIS diffrac-
tive final states at HERA suggests to ask for specific final
states inside the total DIS cross section, in particular to
trace diffraction inside the BK description of the total
cross section. More specific, one has to address the ques-
tion, how much diffraction of the upper dipole is included
in this simple model of fan diagram equation; in other
words, one has to investigate energy cuts through the fan
diagrams. In particular, one is interested in the elastic in-
termediate state shown in Fig. 3. At first sight, since in
Fig. 3 there is always a rapidity gap between the upper
dipole and the first triple pomeron vertex underneath, it
might seem as if there is no contribution from the elastic
rescattering of the upper dipole. A closer inspection of the
triple pomeron vertex [19], however, shows that this is not
correct: in momentum space, the triple pomeron vertex
contains “virtual pieces” which do not originate from real
s-channel gluon production (quite in analogy to the BFKL
vertex, which also consists of a “real” and a “virtual” con-
tribution). These pieces can be traced back to parts of the
diagrams shown in Fig. 3; from this one concludes that
the triple pomeron vertex (3) does contain parts of the
elastic intermediate qq̄ state. Conversely, not the full qq̄
state enters the triple pomeron vertex: the computation
of the of the closed quark loop shows that there are other
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pieces which belong to the reggeization of the gluon. Since
the BK kernel (under the conditions described above) is
the Fourier transform of V , it follows that also the BK
equation has a part of elastic scattering being built in. It
is not surprising that the question for the s-channel con-
tent of the BK equation cannot simply be answered by
“yes” or “no”: both the fan diagram equation and the BK
equation have been written for the elastic scattering of
a dipole which, by the optical theorem, is related to the
(completely inclusive) total cross section. The decompo-
sition of the BK equation in terms of intermediate states
may require another form.

In fact, it is instructive to re-organize the fan diagrams
in such a way that one sees the elastic scattering explic-
itly [23]: in the large-Nc limit one can show that one can
re-order the sum of Feynman diagrams in such a way that
the coupling of two pomeron ladders to the qq̄ dipole is
seperated from the remainder; as a result, one finds a new
triple pomeron vertex (“diffractive vertex”), which is dif-
ferent from the one used in the BK equation: it turns out
to coincide with the last two terms on (3). The Fourier
transform to coordinate space has been computed in [21];
it has a fairly simple form:

− ᾱs

∫
d2z

2π
|x − y|2

|x − z|2 |y − z|2
[
(Nxz + Nzy − Nxy)2

]
.

(5)

The negative sign indicates that this kernel for the non-
linear part again leads to the saturation for evolution in
rapidity. It would be interesting to investigate solutions to
the non-linear evolution equation (4), with the non-linear
part of the kernel being replaced by (5).

In conclusion, for the further analysis of saturation in
deep inelastic scattering it will be necessary to find theo-
retical descriptions of specific final states inside the high
density system; this topic definitely requires futher theo-
retical work.

4 Concluding remarks

We have reviewed a few phenomena in DIS at HERA
which have a natural interpretation if saturation is as-
sumed to be present at small-x and moderate Q2; most
of them are centered in the transition region where the
analysis in terms of pQCD is expected to require substan-
tial corrections. Each of the discussed phenomena, when
considered separately, could possibly be explained by an-
other and different model or mechanism; nevertheless it is
remarkable that the simple idea of saturation provides a
natural explanation of this variety of seemingly indepen-
dent phenomena.

Theoretical studies of saturation in QCD are largely
based upon the non-linear Balitsky–Kovchegov equation.
This equation has been derived and investigated in coor-
dinate space. For practical applications it is important to
have the translation to momentum space. Further investi-
gation of the role of saturation in deep inelastic scattering

will need to look into specific final states formed by the
high density gluon system, in particular into the role of
diffractive final states. The BK equation which has been
designed for fully inclusive cross sections contains parts
of the elastic qq̄ intermediate state; it may, however, not
be the best way to implement DIS diffraction into the de-
scription of saturation at HERA. Hence further theoreti-
cal work is needed to provide a realistic theory for HERA
data.
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